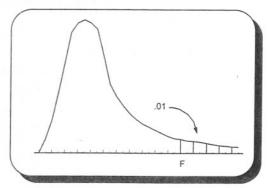
Chapter 18 Analysis of Variance

I. Introduction

- A. Understanding variability is important.
 - 1. Quality manufacturing, successful marketing, and effective training require an understanding of variability.
 - 2. Using a t-distribution (page 99, section V,C) requires determining the equality of population variances.
- B. Analysis of variance will require using the F distribution.
- C. Characteristics of the F distribution (named after originator R. Fisher)
 - 1. It is positively skewed, unimodal, continuous, and asymptotic.
 - 2. Basic assumptions of the F distribution
 - a. Experiments are of random design.
 - b. Variables are independent.
 - c. Populations are normally distributed with equal variances.
 - d. Both interval and ratio levels of data may be analyzed.
 - 3. Degrees of freedom for the numerator and degrees of freedom for the denominator determine the shape of this family of curves.



II. Testing two sample variances from normal populations

- A. Linda wants to compare sales variability of two stores. A sample of 5 from Store #1 measured mean daily sales at \$110. The standard deviation was \$16. A sample of 8 from Store #2 measured mean daily sales at \$125. The standard deviation was \$14. Test at the .02 level of significance whether these two stores have equal sales variances. This is a two-tail test. One-tail tests involve testing a difference in one direction.
- B. The 5-step approach to hypothesis testing
 - 1. These are the null hypothesis and alternate hypothesis.

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ and } H_1: \sigma_1^2 \neq \sigma_2^2$$

- 2. The level of significance will be .02 and $\alpha/2 = .01$.
- 3. The relevant statistic F, is the ratio of the sample variances.
 - a. The larger variance is always put on top.
 - b. This means F is a positive number greater than one.
 - c. F's value increases as the difference in variability increases for this one-tail test.

- The decision rule will be, if F from the test statistic is large enough (beyond the critical value), the difference in variability is high and the null hypothesis is rejected.
 - a. Degrees of freedom is df and df = n 1.
 - b. For the numerator, df is n 1 = 5 1 = 4.
 - c. For the denominator, df is n 1 = 8 1 = 7.
 - d. From the table, f = 7.85.
- Apply the decision rule.

$$F = \frac{s_1^2}{s_2^2} = \frac{16^2}{14^2} = 1.31$$
 Accept H₀ because 1.31 < 7.85. Variances are equal.

F Distribution, Critical Values for the Upper .01					
	Numerator degrees of freedom				
Denominator degrees of freedom		1	2	3	4
	1	4052	4999	5403	5624
	2	98.49	99.00	99.17	99.25
	3	34.12	30.82	29.46	28.71
	4	21.20	18.00	16.69	15.98
	5	16.26	13.27	12.06	11.39
	6	13.74	10.92	9.78	9.15
	7	12.25	9.55	8.45	7.85
	8	11.26	8.65	7.59	7.01
	9	10.56	8.02	6.99	6.42

See pages ST 5A and 5B for more complete F tables.

III. Testing 3 or more sample means from normally-distributed populations

- A. These analysis of variance tests are called ANOVA.
- B. ANOVA measures whether a treatment variable has caused a change in a response variable.
- C. ANOVA is used to measure training effectiveness and product quality when 3 or more samples are involved.
- D. Basic procedures
 - 1. ANOVA uses two separate measures of population variance.
 - 2. Each is part of the f ratio.
 - The numerator measures between treatment variance.
 This variance is due to differences among sample means.
 - The denominator measures within treatment variance. This variance, which is only due to within group differences, is variation due to error.
 - 5. If the null hypothesis is true, the population means are equal, the expected value of the two measures of population variance will be equal, and F will be one. Otherwise, F will be larger than one.
 - 6. If, based upon some level of significance, the test statistic F is larger than the critical value of F, the means are not equal and the null hypothesis is rejected.

